173 lines
7.8 KiB
Python
173 lines
7.8 KiB
Python
from typing import List, Dict
|
|
import json
|
|
import pandas as pd
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from jinja2 import Environment, FileSystemLoader
|
|
from weasyprint import HTML
|
|
import logging
|
|
import asyncio
|
|
from app.schemas.file import FileInDB
|
|
from app.services.base_service import BaseService
|
|
from sqlalchemy.orm import Session
|
|
from app.models.tcgplayer_products import TCGPlayerProduct, TCGPlayerGroup, MTGJSONSKU, MTGJSONCard
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
class PullSheetService(BaseService):
|
|
def __init__(self):
|
|
super().__init__(None)
|
|
self.template_dir = Path("app/data/assets/templates")
|
|
self.env = Environment(loader=FileSystemLoader(str(self.template_dir)))
|
|
self.template = self.env.get_template("pull_sheet.html")
|
|
|
|
async def get_or_create_rendered_pull_sheet(self, db: Session, order_ids: list[str]) -> FileInDB:
|
|
# get file service
|
|
file_service = self.get_service('file')
|
|
# check if rendered pull sheet exists
|
|
rendered_pull_sheet = await file_service.get_file_by_metadata(db, "order_ids", order_ids, "rendered_pull_sheet", "application/pdf")
|
|
if rendered_pull_sheet:
|
|
return rendered_pull_sheet
|
|
# check if pull sheet data file exists
|
|
pull_sheet_data_file = await file_service.get_file_by_metadata(db, "order_ids", order_ids, "pull_sheet", "text/csv")
|
|
if pull_sheet_data_file:
|
|
# generate pdf from pull sheet data file
|
|
return await self.generate_pull_sheet_pdf(db, pull_sheet_data_file)
|
|
# if no pull sheet data file exists, get it from order management service
|
|
order_service = self.get_service('order_management')
|
|
pull_sheet_data_file = await order_service.get_pull_sheet(db, order_ids)
|
|
return await self.generate_pull_sheet_pdf(db, pull_sheet_data_file)
|
|
|
|
async def generate_pull_sheet_pdf(self, db: Session, file: FileInDB) -> FileInDB:
|
|
"""Generate a PDF pull sheet from a CSV file.
|
|
|
|
Args:
|
|
file: FileInDB object containing the pull sheet data
|
|
|
|
Returns:
|
|
Path to the generated PDF file
|
|
"""
|
|
try:
|
|
# Read and process CSV data
|
|
items = await self._read_and_process_csv(db, file.path)
|
|
|
|
# Prepare template data
|
|
template_data = {
|
|
'items': items,
|
|
'generation_date': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
}
|
|
|
|
# Render HTML
|
|
html_content = self.template.render(**template_data)
|
|
|
|
# Ensure metadata is properly formatted
|
|
metadata = file.file_metadata.copy() if file.file_metadata else {}
|
|
if 'order_ids' in metadata:
|
|
metadata['order_ids'] = sorted(metadata['order_ids'])
|
|
|
|
file_service = self.get_service('file')
|
|
return await file_service.save_file(
|
|
db=db,
|
|
file_data=html_content,
|
|
filename=f"rendered_pull_sheet_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf",
|
|
subdir="tcgplayer/pull_sheets/rendered",
|
|
file_type="rendered_pull_sheet",
|
|
content_type="application/pdf",
|
|
metadata=metadata,
|
|
html_content=True # This tells FileService to convert HTML to PDF
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error generating pull sheet PDF: {str(e)}")
|
|
raise
|
|
|
|
async def _get_color_identity(self, db: Session, row: pd.Series) -> str:
|
|
"""Get color identity from a row.
|
|
|
|
Args:
|
|
row: pandas Series
|
|
"""
|
|
# get category id from set name
|
|
group_id = db.query(TCGPlayerGroup).filter(TCGPlayerGroup.name == row['Set']).first().group_id
|
|
# format number
|
|
number = str(int(row['Number'])) if 'Number' in row and pd.notna(row['Number']) and '/' not in str(row['Number']) else str(row['Number']) if 'Number' in row and pd.notna(row['Number']) and '/' in str(row['Number']) else ''
|
|
# get product info from category id
|
|
product_id = db.query(TCGPlayerProduct).filter(TCGPlayerProduct.group_id == group_id).filter(TCGPlayerProduct.name == row['Product Name']).filter(TCGPlayerProduct.ext_number == number).filter(TCGPlayerProduct.ext_rarity == row['Rarity']).first().tcgplayer_product_id
|
|
# get scryfall id from product id
|
|
mtgjson_id = db.query(MTGJSONSKU).filter(MTGJSONSKU.tcgplayer_product_id == product_id).first().mtgjson_uuid
|
|
scryfall_id = db.query(MTGJSONCard).filter(MTGJSONCard.mtgjson_uuid == mtgjson_id).first().scryfall_id
|
|
# get color identity from scryfall
|
|
scryfall_service = self.get_service('scryfall')
|
|
color_identity = await scryfall_service.get_color_identity(scryfall_id)
|
|
if color_identity is None:
|
|
return '?'
|
|
# color identity is str of json array, convert to human readable string of list
|
|
color_identity = [str(color) for color in color_identity]
|
|
# if color identity is empty, return C for colorless
|
|
if not color_identity:
|
|
return 'C'
|
|
# ensure order, W > U > B > R > G
|
|
color_identity = sorted(color_identity, key=lambda x: ['W', 'U', 'B', 'R', 'G'].index(x))
|
|
color_identity = ''.join(color_identity)
|
|
return color_identity
|
|
|
|
async def _update_row_color_identity(self, db: Session, row: pd.Series) -> pd.Series:
|
|
"""Update color identity from a row.
|
|
|
|
Args:
|
|
row: pandas Series
|
|
"""
|
|
# get color identity from row
|
|
color_identity = await self._get_color_identity(db, row)
|
|
# update row with color identity
|
|
row['Color Identity'] = color_identity
|
|
return row
|
|
|
|
|
|
async def _read_and_process_csv(self, db: Session, csv_path: str) -> List[Dict]:
|
|
"""Read and process CSV data using pandas.
|
|
|
|
Args:
|
|
csv_path: Path to the CSV file
|
|
|
|
Returns:
|
|
List of processed items
|
|
"""
|
|
# Read CSV into pandas DataFrame in a separate thread to avoid blocking
|
|
df = await asyncio.get_event_loop().run_in_executor(
|
|
None,
|
|
lambda: pd.read_csv(csv_path)
|
|
)
|
|
|
|
# Filter out the "Orders Contained in Pull Sheet" row
|
|
df = df[df['Product Line'] != 'Orders Contained in Pull Sheet:'].copy()
|
|
|
|
# Convert Set Release Date to datetime
|
|
df['Set Release Date'] = pd.to_datetime(df['Set Release Date'], format='%m/%d/%Y %H:%M:%S')
|
|
|
|
# Sort by Set Release Date (descending) and then Product Name (ascending)
|
|
df = df.sort_values(['Set Release Date', 'Set', 'Product Name'], ascending=[False, True, True])
|
|
|
|
# Process color identities for all rows
|
|
color_identities = []
|
|
for _, row in df.iterrows():
|
|
color_identity = await self._get_color_identity(db, row)
|
|
color_identities.append(color_identity)
|
|
|
|
# Add color identity column to dataframe
|
|
df['Color Identity'] = color_identities
|
|
|
|
# Convert to list of dictionaries
|
|
items = []
|
|
for _, row in df.iterrows():
|
|
items.append({
|
|
'product_name': row['Product Name'],
|
|
'condition': row['Condition'],
|
|
'quantity': str(int(row['Quantity'])), # Convert to string for template
|
|
'set': row['Set'],
|
|
'rarity': row['Rarity'],
|
|
'card_number': str(int(row['Number'])) if 'Number' in row and pd.notna(row['Number']) and '/' not in str(row['Number']) else str(row['Number']) if 'Number' in row and pd.notna(row['Number']) and '/' in str(row['Number']) else '',
|
|
'color_identity': row['Color Identity']
|
|
})
|
|
|
|
return items |